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A kinematic description is presented of how turbulent diffusion from a continuous 
source varies with the sampling time in stationary, homogeneous turbulence. Unlike 
most previous theories, the sampling is assumed to take place at fixed downstream 
distances from the source. It is shown that the sampling-time effects depend on two- 
particle velocity statistics. Thus, time-average diffusion at fixed downstream distances 
is more akin to relative diffusion than to absolute diffusion. Two simple diffusion 
models are developed from the kinematic equations. These models are in fairly good 
agreement with diffusion data obtained both in a wind tunnel and in the field. 
Moreover, these models have significant practical implications. For example, the 
models indicate that care must be taken when using band-pass spectral filtering as a 
paradigm for turbulent diffusion. Also, the models show that the mean flow speed U 
has an important influence on the sampling-time effects. To account for U properly, 
diffusion measurements with differing sampling times A should be compared using the 
product UA, and not just A .  

1. Introduction 
Statistical theories of turbulent diffusion such as Taylor’s (1921) equation can 

describe only the ensemble-average characteristics of contaminant clouds. Ideally, any 
measurements of turbulent diffusion that are used to test these theories should also 
represent ensemble averages over many realizations of the turbulence field. In practice, 
however, ensemble-average diffusion measurements are often difficult to obtain, so the 
theories are instead compared with time-average measurements taken at fixed 
downstream distances from a continuous source. Time averaging is especially prevalent 
in atmospheric field measurements of plume concentration, since it is rarely possible to 
observe a large number of identical realizations of atmospheric turbulence. The time 
interval over which the concentration is sampled and averaged, called the sampling 
time, typically ranges from a few minutes to an hour in atmospheric field experiments 
(Wollenweber & Panofsky 1989). 

As the sampling time increases, measured plume concentration distributions tend to 
widen. The reason for this behaviour is that time averaging suppresses the contributions 
of turbulent eddies having characteristic timescales significantly larger than the 
sampling time. Increasing the sampling time thus allows a progressively larger range of 
eddy sizes to influence the diffusion. 

The well-known kinematic theories of turbulent diffusion are valid only at either 
asymptotically large or asymptotically small sampling times. Taylor’s (1 92 1) equation, 
for example, describes the ensemble-average diffusion of a single marked fluid particle. 
If ergodicity is assumed, Taylor’s equation also represents time-average plume 
diffusion when the sampling time is asymptotically large; this is the so-called absolute 
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diffusion of the plume. Diffusion in the opposite limit of small sampling times 
corresponds to the plume’s relative diffusion, as described by Richardson (1926) and 
Batchelor (1952). Other diffusion theories and models are also generally restricted to 
either absolute or relative diffusion (e.g. Sutton 1953; Smith & Hay 1961 ; Batchelor 
1964; Thompson 1987). 

Ogura (1957, 1959) was one of the first to develop a diffusion theory that explicitly 
includes the sampling time. His theory has been the focus for most of the subsequent 
discussions of the sampling time, such as Hino (1968), Doran, Horst & Nickola (1978), 
and Sheih (1980). Pasquill & Smith (1983) and Eckman (1989) have indicated, 
however, that Ogura’s theory is obtained by sampling the turbulent motion of a single 
fluid particle over a finite time interval. This single-particle sampling is quite different 
from the type of sampling that is employed in practice, in which the plume 
concentration is sampled over a finite interval at fixed downstream distances from the 
source. There is no reason to believe that these two types of sampling are kinematically 
equivalent. For example, the mean flow speed U has no direct effect on the single- 
particle sampling used in Ogura’s theory, because the sampling is purely Lagrangian 
in nature. In contrast, U has a significant effect on the time-average diffusion at a fixed 
downstream distance from the source, since a change in U will alter the frequency 
distribution of the turbulence at a fixed point. 

In this paper, kinematic equations are developed to describe the effects of the 
sampling time on turbulent diffusion from a continuous source. The sampling is 
assumed to take place at fixed downstream distances from the source, as is the usual 
practice in the measurement of turbulent diffusion. For simplicity and tractability, the 
discussion is restricted to stationary, homogeneous turbulence. It is shown how the 
sampling-time effects depend on two-particle velocity statistics. The kinematic 
equations are then used to derive simpler diffusion models involving Eulerian velocity 
spectra. Finally, these models are compared with diffusion measurements taken in a 
wind tunnel and over flat terrain in Denmark. 

2. Basic concepts 
Consider a continuous source of marked fluid located in a turbulent flow with a 

constant mean flow speed U. The turbulence is assumed to be stationary and 
homogeneous. A coordinate system is oriented in this turbulence field so that the x, 
component of a position vector x is in the downstream direction, whereas the x, and 
x, components are in cross-stream directions. The source strength S(xt) at time t 
describes the quantity of marked fluid released per unit volume and unit time. For 
simplicity, it is assumed that the centre of the source is at x = 0 at all t :  

X ,  S(X, t )  dx = 0. s 
The volume integral extends over the entire region occupied by the turbulent flow, and 
n = 1,2,3. Unless stated otherwise, spatial integrals in this paper are assumed to extend 
over all possible coordinate positions. 

If c(x, t )  denotes the concentration of marked fluid at a point in space and time, then 
the absolute diffusion of the continuous plume is described by the ensemble-average 
concentration (c(x, t ) ) .  Angular brackets are used throughout this paper to denote 



Sampling time and kinematics of turbulent difusion 351 

ensemble averaging. The ensemble-average concentration is related to the source 
strength by the equation (Monin & Yaglom 1971, $10) 

(c(x, 0 )  = ~~~tdsJ’S(xo,s)Q(x-x, , l  t--)dx,. (2) 

Here, Q(x - x, I t - s)  is the probability density function for the displacement x - x, of 
a single fluid particle over a travel time t - s  in homogeneous, stationary turbulence. 

The most useful aspects of the distribution (c(x, t ) )  are its second moments in the 
cross-stream directions. Given (l), these moments are defined as 

where i,j = 2,3. Taylor’s (1921) equation can be used to estimate the absolute-diffusion 
tensor Dij if the travel time T of the marked fluid reaching x1 is assumed to equal xl/ U 
(e.g. Monin & Yaglom 1971, $10; Kristensen, Jensen & Petersen 1981). 

Relative diffusion deals with the distribution of marked fluid about the plume’s 
instantaneous centreline, so it is associated with the ensemble-average covariance 
(c(x,  t )c (x+A,  t ) ) .  This covariance is related to the source distribution by the integral 
(Durbin 1980 ; Thomson 1990) 

ds” dx, S(x,, s’) S(x, + A,, s”) J‘sJ<tdsL J‘ J’ (c(x, t )  c(x + A ,  t ) )  = 

x q ( X  - x,, A I A,, S” - s’, t - s’, t - s”) dd,. (4) 
The function q(x - x,, A 1 A,, s” - s‘, t - s’, t - s”) is the joint probability density function 
for the displacement x - x, and separation A of two marked fluid particles. One particle 
is released at (x,, s’) and reaches the point x at time t. The second particle is released 
at (x, +A, ,  s”) and is separated from the first particle by A at time t. The functional 
form of q given in (4) applies only to stationary and homogeneous turbulence. 
Although the three times that appear in q are not independent, they are retained here 
for consistency with the derivations in $3.  

As with absolute diffusion, the most useful aspects of relative diffusion are second- 
order tensors in the cross-stream directions : 

dx, dx, dd, di  dj(c(x, t )  c(x + A ,  t ) )  dd, 

dx, dx, dd, (c(x, t )  c(x + A,  t ) )  dd, 
4 j ( %  t )  = ssss J’ ( 5 )  

The downstream component d, of the separation is set equal to zero in this equation. 
If the travel time T of the particles reaching x1 is equal to x J U ,  Batchelor’s (1952) 
theory for relative diffusion can be used to estimate dij. A number of researchers, 
including Smith & Hay (1 961), Mikkelsen, Larsen & PCcseli (1 987), and Georgopoulos 
& Seinfeld (1988), have developed simplified models for the variation of the relative- 
diffusion tensor with the travel time or downstream distance. 

3. Kinematics of time-average diffusion 
Although the theory developed by Ogura (1957) uses a single-particle sampling 

procedure that is quite different from that employed in practice, it has still been widely 
12.2 
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used to estimate time-average diffusion (e.g. Hino 1968 ; Doran et al. 1978 ; Pasquill & 
Smith 1983) because of its simplicity and close association with Taylor’s (1921) 
equation. Relatively little effort has been made to develop a kinematic diffusion model 
that accounts for finite sampling at fixed downstream distances. 

Shimanuki (1961) recognized that a more realistic theory for the sampling time 
requires the consideration of marked fluid particles having different release times. He 
developed a kinematic equation for the time-average diffusion of a streak line (i.e. the 
plume from a continuous point source). However, the restriction of his equation to 
streak lines leads to unrealistic results at small sampling times. In addition, Shimanuki 
did not explicitly consider the dependence of streak-line diffusion on two-particle 
velocity statistics. 

Monin & Yaglom (1975, $24) and Kristensen et al. (1981) also discussed the time- 
average diffusion of streak lines. Monin & Yaglom’s discussion is very brief and closely 
parallels Shimanuki’s (1961) work. Kristensen et al. independently derived equations 
for streak-like diffusion in their discussion of plume meandering in a stable atmosphere. 
They went on to develop a simple model for streak-line diffusion that includes both 
Eulerian and Lagrangian velocity correlations. Since the discussions of the sampling 
time by Shimanuki (1961), Monin & Yaglom (1975), and Kristensen et al. (1981) are 
restricted to streak lines and are rather limited, the kinematic effects of the sampling 
time are considered in more detail in this section. 

Before proceeding with the mathematical derivations, it should be noted that the 
inclusion of time averages in a statistical diffusion model does not eliminate the need 
for ensemble averages. Unless the sampling time is asymptotically large, an ergodic 
hypothesis cannot be used to replace ensemble averages with time averages. Hence, the 
derivations given in this section contain both time and ensemble averages. 

One can first consider the effects of time averaging on the absolute diffusion of a 
plume. Since the absolute diffusion is described by the ensemble-average concentration 
(c(x, t ) ) ,  the effects of time averaging at the fixed point x are given by the integral 

C(x, t ,  A )  = - S”” (c(x, r ) )  dr  
A t-,412 

The variable A is the sampling time. Clearly, the time-average concentration C(x, t, A )  
will differ from (c(x, r ) )  when the source strength varies with time. However, when the 
source strength is constant with time and the turbulence is stationary, (c(x, r ) )  is no 
longer a function of r, so C(x, t ,  A )  will equal (c(x, r ) ) .  Hence, the sampling time A 
only plays a role for absolute diffusion in stationary turbulence when the source 
strength varies with time. 

Since measured concentration distributions tend to widen with the sampling time 
even when the source strength is constant, the widening must not be an absolute- 
diffusion phenomenon. It must therefore be more closely linked to relative diffusion. 
The reason for this linkage is that plume concentration distributions are usually 
measured with respect to the time-average plume centreline, and not with respect to a 
fixed coordinate origin. 

To describe the diffusion of the plume about the time-average centreline, it is 
necessary to consider the ensemble-average covariance (c(x, t’) c(x+ A ,  t”)). This is 
similar to the relative-diffusion covariance used in 42, except for the appearance of two 
times t’ and t”. A linkage of this covariance to the source strength S(x, t )  can be made 
through the equation (Thomson 1990) 
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(c(x, t’)e(x+A, t”))  = S(x,, s‘) S(x, + A , ,  s”) 

x q(x - x,, A 1 A,, S” -s’, t‘ - s’, t” - 3”)  dd,,. (7) 

The joint probability density function q has already been defined in $2. 
The most important aspects of (c(x, t’) c(x+ A ,  t”)) from a practical viewpoint are 

its variability with A ,  and A ,  at a fixed downstream distance x,. Thus, it is useful to 
define the function 

/dx21{c(x, t’)c(x+A,t”))dx, 

dx, dx, dd, (c(x, t’)c(x+d, t ” ) )dd,  
7 (8) s s s s  P(d,, A ,  I x,, t‘, t”) = 

where dl is set equal to zero. This can be interpreted as the joint probability density 
function for finding two marked fluid particles separated by (A,,, A , )  at a downstream 
distance x, from a continuous source, given that one of the particles reaches x, at time 
t’ and the other reaches this downstream distance at t“. 

The effects on the plume diffusion of sampling the concentration over an interval A 
are obtained by averaging P(d,, A ,  I x,, t’, t”) over both t‘ and t“: 

As with the relative diffusion described in $2, the most useful aspects of this time- 
average function are the second moments 

,. 

where i,j = 2 , 3 .  The square root of this tensor Cij can be interpreted as the ‘width’ of 
the time-average plume at the downstream distance x,. 

The general description of time-average diffusion as given by equations (7)-(10) is a 
highly complex two-particle diffusion process. To proceed further it is necessary to 
make some simplifying assumptions. First, it is assumed that the source strength is 
constant with time, so that S(x, t )  = S(x). Secondly, it is assumed that the travel times 
of the marked fluid particles reaching the downstream distance x, are narrowly 
distributed about the value xl/ U (Monin & Yaglom 197 1, $10; Kristensen et al. 198 1). 
This latter assumption is commonly invoked in plume diffusion modelling and is 
reasonable if two conditions are fulfilled. First, the turbulent velocity fluctuations in 
the downstream direction must be small compared to U so that the streamwise 
diffusion can be neglected (see Kristensen et al. 1981). Secondly, the ‘length’ of the 
source distribution S(x) in the downstream direction must be small compared with xl. 
This restriction on the source ensures that all the marked particles reaching x, have 
been advected nearly the same distance by the mean flow speed U. 

One major effect of these simplifying assumptions is that the probability density 
function P(d,, A ,  1 x,, t’, t”) is determined only by the marked fluid released from the 
source at the two instants t’-T and t”-T, where T =  xl/U. In other words, this 
function can be estimated by considering two instantaneous puffs that are sequentially 
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FIGURE 1. Schematic illustration of two fluid particles having release positions separated by A ,  and 
release times separated by T = t” -  t‘. Both particles travel a time T before the final separation A is 
observed. For simplicity, the particle separation is shown only in one dimension. 

released from the source at times separated by t” - t’. The source strength of each puff, 
when normalized by the total mass of the puff, is 

and the distribution I(A,) of particle-pair separations at the source is defined as 

I(A,) = N(x) N(x + A,) dx. (12) s 
s 

Given the simplifying assumptions discussed above, the function P(d,, A ,  1 x,, t’, t”) 
is related to the distribution l (A, )  through the integral 

P(d,, A ,  I xl, t’, t”) = q(d,, A ,  1 A,, t”- t’, T) I(A,) dA,. (13) 

Here, q(d,, d, 1 A,, t”- t’, T )  is the joint probability density function for the cross- 
stream separation (A, ,  d3) at travel time Tof two marked fluid particles. These particles 
are released at times separated by t”- t‘ and from positions separated by A,. Figure 1 
is a schematic illustration of the two particles. 

The right-hand side of (13) shows that P(A, ,d , (x , , t ’ , t” )  is a function of the 
difference t” - t’, but not of each time separately. Hence, the time-average probability 
density function %(A2, A ,  1 x,, t )  is given by 

where 7 = t”-t’ is the difference in release times. In addition, the time-average 
diffusion tensor Cij defined by (10) becomes 
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Note that the dependence of Zsj in t has been eliminated, and the dependence on x, has 
been replaced by a dependence on T = X J U .  If the tensor 

r r 

represents the relative diffusion of two fluid particles having release points separated 
by do and release times separated by 7, equation (1 5 )  can be further reduced to 

Equation (17) shows that the time-average diffusion tensor Cij for a plume is 
obtained by averaging the two-particle tensor ykij over a temporal window determined 
by the sampling time A and over a spatial window determined by the source 
distribution. An important implication of this result is that the sampling-time effects 
that are experimentally observed actually correspond to a form of two-particle 
diffusion, and not to single-particle diffusion. This contrasts with the single-particle 
nature of Ogura's (1957) equation for time-average diffusion. 

The two-particle diffusion $ij defined by (16) differs from that which is normally 
considered (e.g. Batchelor 1952) because of the release-time lag 7. If Taylor's frozen- 
eddy hypothesis is assumed to be valid, this lag adds an extra separation of -U7 
between the two particles, where U = ( U ,  0,O) is the mean velocity vector. The tensor 
$ij can then be interpreted as the relative diffusion of two marked particles that are 
simultaneously released with an initial separation do - U7, although this interpretation 
is complicated by the two particles having different travel times. 

4. Two-particle diffusion with a release-time lag 
The derivation in the previous section showed that the time-average diffusion from 

a continuous source with constant output is determined by the source configuration 
I(d,) and by the two-particle diffusion tensor $,,(T; A,, 7). The dependence of $i j  on 
the turbulence structure is considered in this section. 

4.1. Relation to the turbulent velocity Jield 
An equation for $ij  can be developed by considering the position and velocities of two 
marked fluid particles as a function of the travel time T. The first particle is released 
at some (arbitrary) space-time position (xo, to). Its position vector and velocity after 
travel time T have cross-stream components respectively denoted by Xi(T;  x,, to) and 
u,(T; x,, to) (i = 2,3). The second particle is released at (x, +do, t 0+7)  and has later 
positions and velocities given by Xi( T ;  xo +A, ,  to + 7) and ui( T ;  xo + do, to + 7). 

The tensor ?,hij is related to the separation 

tiv; xo, do, t o ,  7) = X,(T; x g  + do, to  + 7) - X,(T;  x,, to) (18) 
between the particles. Note that this separation is determined when the travel times of 
the particles are equal; the observation times to + T and to + 7 + T of the particles are 
different. The separation ti is related to the relative velocity 

(19) 
through the equations 

(20) 

(21) 

vi( T ;  x0, do, to, 7) = ui( T ;  X, + do, to + 7) - ui( T ;  x,, to) 

xo, do, to, 7) = ti((); xo, do, to, 7) + vi(r; x,, do, to, 7) dr, LT 
a 

"i(T; xO? 7, = - t i tT ;  '07 '0, 7)' i3T 
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For simplicity, the notations ti( T ;  x,,, A,, t,, 7 )  and ui( T ;  x,,, A,, to, 7) are reduced to &(T)  
and vi(T) in the following discussion. 

An expression for $ij (T;  A,, 7) is obtained from (20) and (21) by following the same 
procedure as used in the derivation of Taylor's (1 921) equation. First, the equations are 
combined to obtain an expression for the product ti 5: 

T 
?$& = &(O)V,(T)+<~(O) u i ( 7 ' ) + ( ,  [vi(T)uj(r)  +uj(T)ui(r)]dr. 
aT 

Secondly, ensemble averaging is performed on each side of (22) to obtain an expression 
for $ i j  = ( Ci &) : 

= JnT [&( T, r ;  A,, 7 )  + Rji( T, r ; An, 7)] dr. (23) 

The function R,,(T, r ;  Ao,.7) is the autocovariance for the relative velocity vi. This 
autocovariance is not stationary and thus depends on T and r separately. The first two 
terms on the right-hand side of (22) are not present in (23), because &(O) is not a 
stochastic variable and (ui(T))  = 0. 

Equation (23) has the same basic form as Taylor's (1921) formula for absolute 
diffusion and Batchelor's (1952) formula for relative diffusion; the left-hand side of the 
equation is the rate of change of the diffusion tensor, whereas the right-hand side is an 
integral over a velocity autocovariance. Unlike Taylor's and Batchelor's formulae, 
however, (23) involves particles released at two different times. 

The general form of R,( T,  r ;  A,,  7 )  is unknown, so it is not possible to write a general 
solution to (23). However, the traditional near-field and far-field limits of Taylor's 
equation have their analogues in (23). The near-field limit occurs when T is small 
enough that vi(T) has changed little from its initial value u,(O). In this case, (23) can be 
written as 

?!!!k = 7'[Ri,(0, 0; d,, 7) -k Rji(o, 0 ; do, T)]. (24) i3T 

Thus, ~ i j  is proportional to T 2  in the near-field limit. 
The autocovariance RJO, 0, A,, 7) in (24) depends only on the initial velocities of the 

marked particles, so it provides a purely Eulerian description of the turbulence. An 
Eulerian space-time covariance RG(A,, 7) for the turbulent velocity can be defined as 

Rz(Ao, = ( U i ( 0 ;  x,, to) U j ( 0 ;  x() + A , ,  t o  + 7)), (25) 
where ui was defined at the beginning of this section. This covariance describes the 
relation between the velocity fluctuations at two points separated by do in space and 
7 in time. The autocovariance R,(O, 0, A,, 7) is related to RG through the equation 

R,(O, 0, A,, 7) = 2qij - R@,, 7) - Ri(A , ,  7). (26) 
Here, qij = RG(0,O) represents the velocity covariance when both the time and space 
lags are zero. 

With (26), the near-field limit described by (24) becomes 

= 2T[2qij - Ri(A,,  7) - Rg(A,, 7)]. 
i3T 
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Moreover, if this limit is valid for all the time lags 7 and initial separations A ,  that 
appear in (17), then the continuous-plume tensor C, is given by 

Zij( T ;  A )  = Cij(O; A )  + T 2  2vbj i 
This equation shows that in the near field, the time-averaged diffusion of a continuous 
plume is obtained by averaging the Eulerian space-time covariance R;(A,,7) over a 
spatial window weighted by the source configuration Z and over a temporal window 
weighted by 1 - IT / /A.  

The far-field limit of (23) is reached when the velocity fluctuations ui of the two fluid 
particles become uncorrelated. In this case, the autocorrelation R,,(T, r ; A,, 7) reduces 
to 

Rij(T, r ;  A,, 7) = 2(ui(T; xn, t o )  uj(r; xu, t o ) )  
= 2R&(T-r). (29) 

Here, Ri (T- r )  is the Lagrangian autocovariance. The travel time Tat  which this limit 
first becomes valid generally depends both on the Lagrangian timescale of the 
turbulence and on the initial separation of the two fluid particles. 

When (29) is valid, (23) becomes 

[Rg.(T-r)+Ri(T-r)]dr. 

The left-hand side of this equation is a constant proportional to the Lagrangian 
timescale, so the tensor $i j  varies linearly with the travel time, a behaviour similar to 
Taylor’s (1921) formula in the far-field limit. At sufficiently large travel times, (30) will 
apply to all the particle pairs in a plume, so the plume tensor Cij also varies linearly 
in the far field. 

4.2. DifSusion in the inertial subrange 
Further information about ?,hij in the inertial subrange can be obtained with 
Kolmogorov’s similarity hypotheses, as was done by Batchelor (1950) for relative 
diffusion. For @i,, however, the release-time lag 7 makes application of the similarity 
hypotheses more difficult. During this time lag, the mean velocity U of the flow will 
advect the first fluid particle away from the source. Hence, U must be added to the list 
of parameters for which ?,hij, is a function. However, this problem can be avoided by 
changing from a fixed coordinate system to another inertial system that moves with the 
mean flow velocity U. In this new system, the release-time lag for the two particles is 
still 7, but the initial separation between the particles is A ,  - U7, as shown in figure 2. 
Hence, the mean velocity appears only as an adjustment to the particles’ initial 
separation in the moving coordinate system. 

To apply the similarity hypotheses, it must be assumed that @ij is affected only by 
turbulent eddies in the inertial or dissipation subranges. The diffusion then depends on 
the kinematic viscosity v and the rate of dissipation E of turbulent kinetic energy, in 
addition to T, T ,  and A, -  UT. The general similarity expression for can be written 
as 
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+ T t 
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FIGURE 2. Diffusion of two fluid particles in a coordinate system moving with the mean flow velocity 
U. The particles’ release positions are separated by A ,  - UT, and their release times are separated by 
7. For simplicity, the particle separation is shown only in one dimension. 

where [ A ,  - U71 is the magnitude of A ,  - U7, and G is a universal function. If the initial 
separation is within the inertial subrange, the viscosity can be ignored, and (31) 
simplifies to 

with G, being another universal function. 
In the near-field limit, (24) applies. The similarity hypotheses in this limit can be 

applied to the velocity covariance Rij(O, 0; A,, 7), which depends on v, c, Id, - U71, and 
7. A similarity form of (24) is then 

H is a universal function. When Id,- UT) is within the inertial subrange, H can be 
replaced by a simpler function H I :  

If Taylor’s frozen-eddy hypothesis is valid, the release-time lag 7 affects the diffusion 
only by increasing the initial particle separation by - U7. The function H I  in (34) thus 
represents the decay of the turbulent eddies that takes place over the interval 7. If this 
decay is small (i.e. the frozen-eddy hypothesis is valid) and Id,/ is small compared with 
JUT], equation (34) indicates that $i j  should be proportional to IU71;. Moreover, if 
$ij cc I UT~;  is substituted into (1 7), then Zij cc (UA);. (This substitution is valid when 
UA is significantly larger than the spatial dimensions of I(Ao).)  A similar $ power 
dependence for plume diffusion has previously been obtained by Hino (1968) and 
Pasquill & Smith (1983) using spectral arguments. However, (34) puts more restrictions 
on this result than the spectral derivations. First, it must be assumed that only 
turbulence within the inertial subrange affects the diffusion. Secondly, the diffusion 
must be in the near-field limit for which Zij cc T2.  Thirdly, Taylor’s frozen-eddy 
hypothesis must be valid. Fourthly, the length UA must be large compared with the 
initial size of the cloud. 
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Another important aspect of (34) is the effect of the mean flow speed U. If the eddy- 
decay function H ,  is neglected, a percentage change in U has the same effect on +ii as 
an equivalent percentage change in r.  This equation therefore suggests that plume 
diffusion measurements with different sampling times should be compared based on the 
length UA and not solely on the sampling time A .  The effect of the mean flow speed 
is considered further in $ 5 .  

If the initial separation and release-time lag are sufficiently small, there may be a 
range of travel times for which y?c.ij only weakly depends on A ,  - U7 and r but still has 
not reached the far-field limit in which the particles wander independently. This is 
similar to the intermediate range of travel times for relative diffusion discussed by 
Batchelor (1950). In this intermediate range, the universal function G ,  becomes a 
constant g,, and the diffusion is described by 

a+.. 
2 = g, cT2. 
i3T (35) 

The tensor +i? is therefore proportional to T3 in this range. 

intermediate range of (35) follows a relation of the form 
The travel time T,  representing the transition from the near-field limit of (34) to the 

where L is another universal function. Like the function HI in (34), the function L 
represents the decay of the turbulent eddies over the period r. If this decay is neglected, 
the transition time 

Overall, the discussions in $4.1 and this section indicate that the three stages of 
growth discussed by Batchelor (1950) for relative diffusion can also be applied to the 
time-average diffusion C, of a continuous plume. In the near field, Cij is proportional 
to T2.  At intermediate travel times, (35) indicates that Zij may be proportional to T3 
if the inertial subrange has a large extent. At large travel times, Zij becomes 
proportional to T. Equation (36) suggests that as the sampling time increases, the near- 
field range of travel times grows at the expense of the intermediate travel times. At 
sufficiently large sampling times, the intermediate range is completely eliminated, and 
Cij reduces to the absolute diffusion described by Taylor’s equation. 

should be proportional to 1 U$ provided Idol < I U71. 

5. Simple models for the sampling time 
The complexity of the equations derived in $03 and 4 makes it difficult to relate the 

sampling-time effects to simple turbulence parameters. A general description of the 
time-average diffusion would in fact require detailed knowledge of the two-particle 
velocity covariance R,,(T, r ;  A,, T )  that appears in (23). In this section, two simple 
models are developed using assumptions similar to those employed by Sawford (1982) 
and Mikkelsen et al. (1987) for relative diffusion. Both of these papers use an 
assumption - originally proposed by G. I. Taylor in an unpublished 1935 note - that 
two-particle velocity covariances can be approximated as the product of purely 
Lagrangian and Eulerian velocity correlations. The relative diffusion considered by 
Sawford and Mikkelsen et al., for example, is a function of the two-particle covariance 
(u,(T; x,, to) ui(r; x, + A,, to)). With Taylor’s proposal, this can be approximated as 

r 
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where &.( T-  r )  = Rt(T-  r ) / v f j ,  Rg is defined by (25), and q(4 I A,, 7') is the probability 
density distribution for the separation at travel time T of two fluid particles 
simultaneously released with an initial separation A,. 

The effect of (37) on the kinematics of relative diffusion can be obtained from (17) 
and (23) by setting A (and thus 7) equal to zero. First, (37) is used in (23) to provide 
a modified equation for $ i i j  this equation for $ i j  is then used in (17) to obtain an 
expression for the relative-diffusion tensor Cij( T ;  0). The resulting equation is 

x 2vij - [Rg(A, 0) + R;(d, O)] I,@) dd), (38) i s  
where ] , (A)  = Sq(d I T, 4,) I ( d n )  ddo. (39) 

The function IT represents the distribution of marked-particle separations at travel 
time T. 

An interesting feature of (38) is that it closely resembles the near-field relative 
diffusion limit, which from (28) is given by 

= 2T 2qgj - [Rz(A,, 0) + RjLi'(d,,, O)] Z(4,) dd,,}. i s  aCii( T; 0) 
aT 

The only differences between (38) and (40) are the replacement of I(d,) with Z,(A) and 
the replacement of 2T with an integral over p:. Aside from the integral over pe, 
equation (38) can therefore be interpreted as the rate of diffusion that would result If 
the diffusion is a Markov process that restarts at each travel time T. 

The integral over p i  that appears in (38) is a timescale that approaches 2T for small 
T and is proportional to the Lagrangian timescale of the turbulence for large T. 
Equation (38) can hence be expressed in the simple form 

and the notation [ ]lLfurkov is used to indicate that this term is obtained by restarting the 
diffusion at each travel time T using I,(A) as the initial source distribution. 

Although (37) may not be valid in all circumstances, the work by Sawford (1982) and 
Mikkelsen (1 987) indicates that (4 1) provides reasonable practical estimates of relative 
diffusion. A similar approach may thus be useful for providing practical estimates of 
the time-average diffusion. In the two following sections, simple models for the time- 
average diffusion are obtained by generalizing (41) for A + 0: 

These models provide some insight into how the sampling time affects Cij and how 
plume sampling at a fixed downstream distance differs from the single-particle 
sampling used in Ogura's (1957) equation. 
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5.1. Continuous point source 
The first case to be considered is time-average diffusion from a continuous point source 
(i.e. a streak line). The initial distribution Z(d,) for a point source is equal to a delta 
function at do = 0. Thus, in the near-field limit the time-average diffusion of a streak 
line is from (28) given by 

1 aZ,(T;A) - - 27,, - p (1 - ;) [R$(O, 7) + RE(0, T)] d7 
2T i3T A - A  

If the Eulerian cospectrum C t ( w )  at angular frequency w is defined as 

then (44) reduces to 

(44) 

One question that must be considered before applying (46) to (43) is how small does 
a real source need to be before it can be considered a point source. This question can 
be answered roughly by referring back to (28). As mentioned previously, Taylor’s 
frozen-eddy hypothesis suggests that R:(d,, 7) can be estimated as the purely spatial 
covariance R:(A, - U7,O). Equation (28) will then reduce to (44) if the condition 
I U7( 9 Idol is valid over most of the range 171 < A ,  so that the contribution of the initial 
distribution I(do) is negligible. This condition will generally be valid when UA is much 
larger than the spatial dimensions of I(Ao).  As a rough estimate, then, the source can be 
considered a point if its spatial dimensions are much smaller than UA. The conditions 
for a source to be considered a point are considered further in $5.2. 

To apply (46) to the Markov part of (43), it is necessary to assume that UA is 
significantly larger than the dimensions of the distribution I,(d) at time T. The model 
for time-average diffusion from a point source then becomes 

This can be further simplified by using the Lagrangian cospectrum 
1 roo 

to write the timescale A,,(T) as 

sin (w T )  
dw. Aij( T) = - lom C i ( w )  ~ 

4 
Ti, 0 

(49) 

After integration over T, (47) then reduces to 

sin2 (iw’T) sin2 (:oA)] dw. (50) 
[ I -  ( i W A ) 2  

Zi j (T;A)  = 8- T2 1, do’ 6, C$(w’) CG(w) 
Ti, (iw’T)2 

This equation is a spectral form of the streak-line model developed by Kristensen et al. 
(1 98 1). 
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Equation (50) has some similarities to Ogura’s (1957) equation, which can be written 
as (e.g. Eckman 1989) 

The diffusion tensor is denoted by D,, to indicate that it is a single-particle parameter 
related to the absolute-diffusion tensor described by (3). 

The same filters are applied to the velocity spectra in both (50) and (51). However, 
there are important differences between the equations. First, only the Lagrangian 
cospectrum C,f; appears in (5  I), whereas both the Lagrangian and Eulerian cospectra 
appear in (50). Secondly, the high- and low-pass spectral filters in (51) combine to form 
a band-pass filter; this band-pass filtering is not found in (50), since the high- and low- 
pass filters apply to different frequency variables. 

The band-pass filtering that appears in (51) has often been invoked (e.g. Hanna, 
Briggs & Hosker 1982; Panofsky & Dutton 1984; Georgopoulos & Seinfeld 1988) to 
explain various aspects of turbulent diffusion. However, this band-pass filtering is 
directly tied to the single-particle nature of Ogura’s equation. Equation (50) indicates 
that such band-pass filtering does not occur when a more realistic sampling procedure 
is used for the diffusion. Thus, care must be taken when using band-pass filtering as a 
paradigm for turbulent diffusion. 

Another important difference between (50) and (51) is the effect of the mean flow 
speed U .  Variations in this flow speed affect the Eulerian cospectrum C: but not the 
Lagrangian cospectrum Ck. This is easier to see if the frozen-eddy hypothesis is used 
to replac -e Eulerian frequency cospectrum C:(w) with the Eulerian wavenumber 
cospectruni E;j.(h J : 

where k ,  = w /  U is the wavenumber component in the downstream direction. Equation 
(50) can then be written as 

F p J  = UC:(w)? (52) 

sin2 UA)] dk,. (53) sin2 (io’T) 
(iO’T)2 [’ - (ikl UA)’ 

Zij( T, A )  = 8 J: dw’ lom C$(w’) F:(kJ 
%j  

Taylor’s frozen-eddy hypothesis cannot be applied to (51), since C&(w) is a Lagrangian 
cospectrum. 

In (53), the speed U has a direct effect on the high-pass spectral filter: a larger value 
of U moves the cut-off of this filter towards lower wavenumbers. This is the speed 
dependence that one would expect when the plume sampling takes place at a fixed 
downstream distance from the source. No such speed dependence is found in (51). At 
first sight, Hay & Pasquill’s (1959) suggested relation 

C&(w) = pc;(pw) (54) 
between the Lagrangian and Eulerian frequency spectra may provide such a speed 
dependence. With this relation and (52), (51) can be reduced to 

However, neither filter in this equation has a speed dependence, because the parameter 
p, which is the ratio of the Lagrangian to Eulerian timescales of the turbulence, is 
directly proportional to U (Pasquill & Smith 1983). Thus, the ratio U / p  in (55 )  is 
constant with U. 
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5.2. Gaussian source in inertial-subrange turbulence 
The second case to be considered here is the time-average diffusion from a symmetrical 
Gaussian source having a variance y2. The source distribution I (A)  of marked-particle 
separations is also Gaussian with a variance 2y': 

1 
I (A)  = ---exp(-d2//4y2). 

8n:iy3 

Here, d is the magnitude of A .  
As in $5.1, the near-field diffusion limit given by (28) will be used as a starting point. 

Again, the Eulerian space-time covariance R ~ ( A , , T )  is assumed to be equal to the 
purely spatial covariance RG(A, - U7,O). Equation (28) can then be written as 

The energy spectrum tensor Qij(k) for a vector wavenumber k is the three- 
dimensional Fourier transform of the Eulerian velocity covariance R{(A,  0) (see 
Batchelor 1953) : 

Qij(k) = ~ R;(d,O)exp(-ik.d)dd, ( 5 8 )  
SIT3 ' S  

R t ( d ,  0) = Qij(k) exp (ik. A )  dk. s (59) 

The integral over k extends over all possible wavenumber coordinates. Equation (57) 
can now be expressed in the following spectral form: 

sin2 (:kl UA)] dk. 2 T  i3T (+kl UA)2 

The variable k ,  is the downstream component of k, whereas J(k) is the Fourier 
transform of I(d):  

J(k) = I(d)exp(-ik.d)dd. (61) 8n: 's 
The asterisk in (60) denotes a complex conjugate. 

Equation (60)  has some similarities to (50) in that the time-average diffusion is 
determined by windowing a velocity spectrum with a high-pass filter. However, in (60),  
the high-pass filter is affected by both the sampling time A and the shape characteristics 
of the source (through J ) .  For a Gaussian source described by (56),  the Fourier 
transform J is 

J(k) = exp (- k2y2), (62) 
1 

8n: 

where k is the magnitude of k. Hence, (60)  for this Gaussian source becomes 

sin2 ($kl UA)]  dk. (63) 
1 ac.. = ~ [ Q i j ( k ) + @ j i ( k ) ] [ l - e x p ( - k 2 y 2 )  

2 T  i3T (ikl 

The function exp(-k2y2) in (63) can be interpreted as a low-pass spectral filter 
having a cut-off at k z l/y, whereas sin2 (:kl UA)/(kkl UA)2 is a low-pass filter with a 
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cut-off at about k, z l / U A .  A high-pass spectral filter is created by subtracting the 
product of these two low-pass filters from unity. Equation (63) represents relative 
diffusion when A < y / U ,  because the high-pass filtering is dominated by the function 
exp (- k2y2)  in this limit. Absolute diffusion is obtained when UA is significantly larger 
than the characteristic lengthscale of the turbulence in the downstream direction. 

Quantitative estimates of the time-average diffusion can be obtained from (63) by 
considering the simple case of isotropic turbulence. The functions CZ2 and C,, are equal 
in isotropic turbulence, so they can be replaced by the single function 2cr2 = C,, = Z33. 
The definition of cr conforms to the standard notation used in atmospheric diffusion 
to define the plume's half width. Since cr2 can also be defined as +(C2, + Z3J, (63) can 
be used to obtain 

In isotropic turbulence, the sum @,,(k) + @,,(k) is given by (Batchelor 1953) 

where E(k) is the energy spectrum function. Equation (64) then becomes 

Through a conversion to spherical coordinates, this equation can be reduced to a single 
integral over the wavenumber magnitude k :  

] dk. 
sin (kUA) - (kUA) cos (kUA) - (kUA), Si (kUA) 

( k U ~ t ) ~  
1 a" = 2 jom ~ ( k )  [ + exp ( - ~ y 2 )  
TaT 

(67) 
The function Si (kUA) is the sine-integral function (Gautschi & Cahill 1964). 

The near-field limit described by (67) can now be used as the Markov factor in (43). 
In this factor, the diffusion is restarted at travel time T using a Gaussian source with 
an initial variance equal to cr2(T; A ) :  

sin (kUA) - (kUA) cos (kUA) - (kUA)' Si (kUA) 
(kUA)3 

= 2 j: ~ ( k )  [ 3 + exp ( - k ~ )  

(68) 
The total rate of diffusion is then from (43) equal to 

]dk, (69) 

where A(T)  = A,,(T) = A,,(T). 
Equation (69) provides additional information about when the point-source model 

given by (53) is valid. If cr is large, the high-pass filter in (69) has a cut-off at k z I / r .  

, sin (kUA) - (kUA) cos (kUA) - (IcUA)~ Si (kUA) 
x JomE(k)[;+exp(-k r )  (kUA)3 
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However, if the sampling time is large and (T is small, the cut-off is at k z 5 / U A .  
Equation (69) will therefore reduce to (53) roughly when (T < UA/5.  For a given 
sampling time, then, (53) is valid out to the travel time (or downstream distance) at 
which CT = UA/5.  

Quantitative estimates of (T can be obtained from (69) once functional forms of A ( T )  
and the energy spectrum E(k) are provided. For simplicity, it is assumed here that T 
is small enough that A(T) = 2T. Only the small and intermediate ranges of travel times 
will thus be considered. This is not a major limitation, however, because the sampling 
time has little effect in the far-field diffusion limit. 

To derive a simple expression for the energy spectrum, it is first assumed that the 
one-dimensional longitudinal spectrum F,E,(k,) is of the form 

where a and b are parameters that must be determined. This functional form closely 
resembles measured turbulence spectra in the neutral atmosphere (e.g. Hojstrup 1982 ; 
Panofsky & Dutton 1984). As is shown in the Appendix, this equation can be used in 
isotropic turbulence to derive the following expression for the energy spectrum E(k) : 

5m2 k 3 + 1 Imk/k, 
27 k: (1 + mk/k,)+ 

E(k) = ~ y - 

k,  is the wavenumber at which E(k) reaches its peak, 7 is the variance of the velocity 
fluctuations, and m is a constant equal to 3(7 + 2(26):)/55. With this definition of E(k) 
and A(T) = 2T, the solutions to (69) can be expressed as functions of the dimensionless 
variables y k ,  T, yk,,  and k,  UA. Since y k ,  is inversely proportional to the Lagrangian 
timescale of the turbulence, the small and intermediate ranges of travel times are 
represented by values of yk,, T that are less than unity. 

Figure 3 shows numerical solutions of (69) when E(k) is given by (71) and y k ,  = 
0.01. Three sampling times k,  UA are plotted, representing relative diffusion (k,  UA = 
0.001), absolute diffusion (= 1000) and an intermediate sampling time (= 1). For the 
most part, the top two curves both grow linearly with the travel time. The relative- 
diffusion curve has an accelerated growth rate for travel times in the range 0.05 ,< 
yik, T < 0.5 ; this represents the intermediate range of travel times. 

Figure 4(a) shows the variability of CT with the sampling time when the dimensionless 
travel time yak, T is fixed at 0.1. Three different curves are shown, representing three 
values of the dimensionless source size yk,. As is expected, the sampling time has a 
greater effect on the diffusion when the source is small. 

Little difference exists between the two curves in figure 4(a)  representing 
dimensionless source sizes of 0.01 and 0.001. For both curves, the value of (T in the 
relative-diffusion limit is about 50 YO of the value in the absolute-diffusion limit. This 
ratio of the relative to absolute diffusion only applies to y k ,  T = 0.1, however. At other 
travel times, this ratio can fall as low as 20% when the dimensionless source size is 
0.001. Values of this ratio in the 2&50% range are in good agreement with other 
relative-diffusion models and with field measurements (e.g. Smith & Hay 1961; 
Sawford 1982; Pasquill & Smith 1983; Mikkelsen et al. 1987) at small travel times. 

The curves in figure 4(a)  can also be interpreted as the variation of the time-average 
diffusion with the flow speed U. A percentage change in U has the same effect on the 
time-average diffusion as an equivalent percentage change in the sampling time A .  This 
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qkk, T 

FIGURE 3. Numerical solutions of the sampling-time model as a function of the travel time for 
three different values of k, UA. The source size for all three curves is yk ,  = 0.01. 

variation of the time-average diffusion with the flow speed does not appear in Ogura’s 
(1957) theory because of the single-particle nature of the sampling procedure. 

The most rapid sampling-time variations in figure 4(a) occur when k,UA z 1. 
Because of the influence of the flow speed, this range of rapid variation should occur 
at fairly small sampling times in typical atmospheric conditions. If k ,  = 0.003 m-l 
and U = 5 m s-l, for example, the point k, UA = 1 is reached when A z 1 min. 
The relative-diffusion limit (approximately k, UA < 0.1) is valid in this example when 
A < 7 s, whereas the absolute-diffusion limit (approximately k,  UA > 10) is valid for 
A > 10 min. 

Power laws corresponding to At and A; are compared with the sampling-time model 
in figure 4(b). The $ power law was derived by dimensional arguments in $4.2, and 
represents the maximum rate of variation when a large inertial subrange exists. Figure 
4(b) indicates that this maximum rate may not generally be reached, as a result of both 
the limited extent of observed inertial subranges and the effects of the finite source size 
y .  The f power law has been obtained empirically from measurements (Pasquill & 
Smith 1983; Wollenweber & Panofsky 1989). It seems to fit the model curve in figure 
4(b) fairly well in the vicinity of the point k,  UA = 1. However, the model curve 
corresponds only to a dimensionless source size of 0.001 and a dimensionless travel 
time of 0.1, and the f power law does not fit as well at other source sizes and travel 
times. 

The spectral model given by (71) is intended to describe only the contributions of 
three-dimensional turbulent eddies. Spectral measurements in the atmosphere indicate 
that a considerable amount of energy is also associated with quasi two-dimensional 
motions that have lengthscales much larger than the three-dimensional turbulent eddies 
(e.g. Smedman-Hogstrom & Hogstrom 1975; Gage 1979; Gifford 1988). These two- 
dimensional motions start to be important at wavenumbers that are below the so-called 
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spectral gap, which is located at a wavenumber roughly one order of magnitude smaller 
than the peak wavenumber k,  of the three-dimensional turbulence. 

In regard to figure 4, the presence of these large-scale atmospheric motions indicates 
that the plateau at k ,  UA > 10 may only be temporary. If the spectral gap is located 
at O.lk, and the high-pass filter in (69) has a cut-off at k = 5 /UA,  then these large-scale 
motions should start to contribute to the time-average diffusion when k, U A  2 50. 
Therefore, the plateau in figure 4 may only be a temporary lull over the range 10 < 
k,  UA < 50. Beyond k,  UA = 50, the large-scale motions would produce a continued 
widening of the plume with the sampling time, as has been observed by Hino (1968). 
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5.3. Comparisons with diflusion measurements 
In this section, the model derived in $5.2 is compared with diffusion measurements 
taken both in a wind tunnel and in the field. For these comparisons, +ZZz is assumed 
to represent the horizontal variance C T ~  of the plume distribution, and $L'33 is assumed 
to represent the vertical variance a:. Likewise, q22 and q33 are assumed to represent the 
horizontal cross-stream CT; and vertical C T ~  velocity variances. The model estimates 
CT are equated with cr, for the wind-tunnel data and with C T ~  for the field data. 

Since the model was derived using highly idealized assumptions such as isotropic 
turbulence, it is expected that some deviations will exist between the model and the 
observations. However, the spectral functions that are used in the model have shapes 
that are in fair agreement with observed spectra, so the model should at least explain 
some of the most significant effects of the sampling time on the diffusion. 

The first observations to be considered are from the wind-tunnel experiment 
described by Nappo (1984). In this experiment, oil-fog smoke was released into a wind 
tunnel with a mean flow speed of 1 m s-'. Turbulence was generated with a square-bar 
grid that was modified to produce larger turbulent eddies. The smoke plume was 
photographed from the side using both a & s  shutter speed and four-minute time 
exposures. Gifford's (1957, 1980) technique was then used with the photographs to 
estimate the vertical diffusion CT, of the plume at various downstream distances. 

Given the lengthscale of the turbulence in the wind tunnel, the estimates of C T ~  that 
Nappo (1984) obtained with the four-minute time exposures are representative of 
absolute diffusion, whereas the estimates obtained from the photographs with & s 
shutter speeds are representative of relative diffusion. These data can therefore be 
compared with the absolute and relative diffusion estimates produced by the model in 
$5.2. 

To compare the wind-tunnel data with the model, it is necessary to estimate the 
source size CT,(T = 0), velocity standard deviation C T ~ ,  and wavenumber scale k,. From 
the diameter of the tube that released the smoke, CT,(O) is estimated to be 0.6 cm. The 
decay of the grid-generated turbulence with downstream distance makes it somewhat 
difficult to estimate C T ~ .  By averaging gw measurements taken at different downstream 
distances from the source, Eckman (1989) estimated that C T ~  = 7 cms-l is a 
representative value. He also estimated that the Eulerian integral lengthscale I, for the 
downstream velocity component is approximately equal to 30 cm. From (A 11) in the 
Appendix, the wavenumber scale k,  can then be estimated as 3.3 mP1. 

Figure 5 compares Nappo's CT, measurements with the sampling-time model. The 
model is in good agreement with the observations, although the relative diffusion is 
underestimated at the smallest observed travel time. One possible explanation for this 
underestimation is that some enhanced mixing of the plume occurred near the source 
as a result of the initial momentum of the smoke leaving the source. At the largest 
travel times in figure 5, the observations tend to fall somewhat below the model curves. 
This is probably due to both the streamwise decay of the turbulence and the deviation 
of the timescale A,,(T) from its near-field value of 2 T  at larger travel times. Neither 
of these effects are accounted for in the model. 

The second set of observations to be considered are the field measurements taken 
during the Borris Field Experiments (BOREX) in Jutland, Denmark. Descriptions of 
these experiments are found in Mikkelsen (1983), Mikkelsen & Eckman (1985), and 
Mikkelsen et al. (1987). Military smoke pots were used to generate white smoke during 
BOREX, and the resulting plumes were photographed from a light aircraft. The 
photogrammetric method described by Eckman & Mikkelsen (1991) was then used to 
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FIGURE 5. Comparison of Nappo’s (1984) diffusion data (symbols) with the sampling-time model 
(solid lines). The upper line is the model absolute diffusion, and the lower line is the model relative 
diffusion. 

estimate the plume’s horizontal diffusion cry over a range of sampling times extending 
from 0 (i.e. relative diffusion) to about 30 min. 

The two BOREX runs analysed by Eckman (1989) - Run 6 and Run 1B - are used 
for comparison with the sampling-time model. The measured values of used here are 
somewhat different from the values given by Eckman (1989), because the meandering 
of the plume centreline has been computed using running averages over the available 
photographs, whereas Eckman (1989) computed the meandering using block averages 
over the photographs. Running averages were found to provide more consistent results 
than the block averages when the number of available photographs is small. 

Wind speeds and velocity variances for the BOREX runs were measured with sonic 
anemometers mounted on 10 m towers. These sonic measurements provide the 
following input values for the diffusion model: U = 4.7 m s-l and vv = 1 .O m s-l for 
Run 6, and U = 5.9 m s-l and a, = 1.2 m s-l for Run 1B. The wavenumber scale k, 
was estimated for the runs by using the lateral velocity spectra given by Mikkelsen 
(1983). Equation (A 9) in the Appendix indicates that within the inertial subrange, k,  
can be estimated as 

From the inertial subrange of Mikkelsen’s (1983) spectra, it is estimated that k, = 
0.0036 m-l for Run 6 and 0.0025 m-l for Run 1B. 

Figure 6(a)  shows the observed and modelled values of gy for three different 
sampling times during Run 6. The model matches the observed variations of gY fairly 
well. Moreover, the model correctly predicts that much of the observed variation of 
C T ~  with the sampling time occurs for sampling times less than about two minutes 
(k, UA < 2), whereas relatively little variation occurs at larger sampling times. 

In figure 6(b)  the Run 6 data and the model are compared at three different travel 
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times. The relative-diffusion measurements in the plot have been assigned a sampling 
time of 0.5 s so that they fit properly with the logarithmic scaling. As in figure 6(a), the 
model compares favourably with the observed diffusion as a function of both the travel 
time and the sampling time. 

Figure 7 compares the BOREX Run 1B data with the sampling-time model. In both 
figure 7(a )  and figure 7(b), the model curves compare favourably with the observations. 
However, the model tends to underestimate the observed relative diffusion at the 
smallest travel times. This underestimation was also observed in the wind-tunnel data 
(figure 5).  It is not clear whether this underestimation is due to the assumptions 
inherent in the sampling-time model or to enhanced mixing at the source resulting from 
the initial momentum or buoyancy of the source. 
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FIGURE 7. Comparison of the BOREX Run 1B data (symbols) with the sampling-time model (solid 
lines). (a) shows the data and model at three different sampling times. The model curves are in order 
of increasing sampling time from the bottom to the top of the plot. (b) shows the data and model at 
three travel times. The model curves are in order of increasing travel time from the bottom to the top 
of the plot. The relative-diffusion measurements have been piaced at A = 0.5 s so that they fit 
properly on the logarithmic axis. 

6. Conclusions 
This paper has considered how turbulent diffusion from a continuous source varies 

with the sampling time in stationary, homogeneous turbulence. The sampling was 
assumed to take place at fixed downstream distances from the source. It was shown 
that this type of sampling is kinematically different from the sampling considered by 
Ogura (1957), in which the turbulent motions of a single fluid particle are observed 
over a finite time interval. The sampling effects at fixed downstream distances were 
shown to depend on two-particle velocity statistics. In contrast, the sampling 
considered by Ogura depends only on single-particle velocity statistics. Thus, plume 
sampling at fixed downstream distances is more akin to relative diffusion than to 
absolute diffusion. 
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When an extensive inertial subrange exists, the time-average diffusion tensor C,, was 
shown to have three stages of growth that are similar to those for relative diffusion. In 
the near field, Eh, is proportional T2.  At intermediate travel times, C,? niay be 
proportional to T3 if the inertial subrange is extensive. In the far field, C,, is 
proportional to T. As the sampling time increases, the near-field range of travel times 
grows at the expense of the intermediate range. At sufficiently large sampling times, the 
intermediate range is completely eliminated, and the diffusion reduces to the absolute 
diffusion described by Taylor’s equation. 

Dimensional arguments were used to show that when the diffusion is dominated by 
turbulence in the inertial subrange, C,, should be proportional to A! as has been 
previously obtained by others (e.g. Hino 1968) using spectral arguments. However, the 
dimensional arguments put additional restrictions on this result, namely, the diffusion 
must be in the near-field limit, and the initial size of the cloud must be small compared 
with the length UA. The model results in $ 5  indicate, however, that the A: power law 
may not generally be reached in the atmosphere, because of the limited extent of the 
inertial subrange and the effects of the finite source size. 

The simple models developed in $ 5  were shown to be in fairly good agreement with 
diffusion observations both in a wind tunnel and in the field. In both the model and 
the field data, the diffusion varies most rapidly with the sampling time when the 
sampling time is on the order of one minute. Much less variation is observed for 
sampling times on the order of ten minutes, although the model does not account for 
large-scale quasi two-dimensional atmospheric motions that will affect the observed 
diffusion at sampling times significantly larger than ten minutes. 

The models in $ 5 have important practical implications. For example, the band-pass 
spectral filtering that is often used as a paradigm for turbulent diffusion was shown not 
to exist when the sampling takes place at fixed downstream distances from a source. 
Instead, this band-pass filtering requires the single-particle sampling that is invoked in 
Ogura’s (1957) theory. Hence, care should be taken in using the band-pass filtering as 
a paradigm for turbulent diffusion. 

Another important implication of the models is the effect of the mean flow speed U. 
Unlike Ogura’s equation, these models indicate that the samflling time effects are 
determined by product UA, and not just by A .  This means that two sets of diffusion 
measurements with the same sampling time A will not be compardble if the mean flow 
speed U is different for each set. To account for the speed effects, diffusion data with 
different sampling times should be compared using the length UA. This has not 
generally been done in the past. 

The author is grateful to Dennis W. Thomson of The Pennsylvania State University 
for his support during the duration of this research. He would also like to acknowledge 
Torben Mikkelsen and Leif Kristensen of Riser National Laboratory, Denmark for 
their useful discussions. 

Appendix 

longitudinal spectrum FE(k,) by the expression (Batchelor 1953) 
In isotropic turbulence, the energy spectrum E(k) is related to the one-dimensional 
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Given the form of F,", in (70), E(k) has the form 

3+11bk 
( 1  +bk)y' 

E(k) = gabk 

The wavenumber scale k,  is defined as the wavenumber at which E(k) has a maximum. 
It is therefore related to the parameter b through the expression 

3 7+2(26); - m k =- _ -  
O 55 b b '  

Equation (A 2) can then be written as 

k 3 + 1 lmk/k,  
k ,  ( 1  + mk/k,)? ' 

E(k) = gum- 

An expression for the parameter a can be obtained by requiring that the integral of 
E(k) over all positive wavenumbers be equal to $7, where 7 is the velocity variance in 
isotropic turbulence. This gives 

and 

m 7  
3 k,' 

a = -- 

5m2 k 3 + 1 lmk/k,  
27 ki  ( 1  + mk/k,)? ' 

E(k) = - 7 - 

Given the above derivations for the parameters a and b, the original longitudinal 
spectrum can be written as 

m 7  1 
F;(k,) = -- 

3 ko ( 1  + rnk,/k,)g ' 

Moreover, the lateral spectrum F$(k,) is related to FE(k,) in isotropic turbulence by 
the equation (Batchelor 1953) 

Hence, the expression for FE is 

m 7 3+8mk,/k, 
18 k ,  ( 1  + mk,/k,)% ' 

F,E,(kJ = -- 

Since k,  represents the peak of the energy spectrum, it should be inversely related to 
the integral lengthscales of the turbulence. The integral lengthscale 1, for the 
longitudinal velocity fluctuations is defined as 

By using (A 7), the scale becomes 
mx 1 =- 
3k, 
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Likewise, the integral lengthscale I, for the lateral velocity fluctuations can be expressed 
as 
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